Vladikavkazskii Matematicheskii Zhurnal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vladikavkaz. Mat. Zh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vladikavkazskii Matematicheskii Zhurnal, 2004, Volume 6, Number 1, Pages 26–28 (Mi vmj192)  

Non-uniqueness of certain Hahn–Banach extensions

E. Beckenstein, L. Narici

Mathematics Department, St. John's University, Staten Island, NY, USA
References:
Abstract: Let $f$ be a continuous linear functional defined on a subspace $M$ of a normed space $X$. If $X$ is real or complex, there are results that characterize uniqueness of continuous extensions $F$ of $f$ to $X$ for every subspace $M$ and those that apply just to $M$. If $X$ is defined over a non-Archimedean valued field $K$ and the norm also satisfies the strong triangle inequality, the Hahn–Banach theorem holds for all subspaces $M$ of $X$ if and only if $K$ is spherically complete and it is well-known that Hahn–Banach extensions are never unique in this context. We give a different proof of non-uniqueness here that is interesting for its own sake and may point a direction in which further investigation would be fruitful.
Received: 24.03.2004
Bibliographic databases:
Document Type: Article
UDC: 517.98
Language: English
Citation: E. Beckenstein, L. Narici, “Non-uniqueness of certain Hahn–Banach extensions”, Vladikavkaz. Mat. Zh., 6:1 (2004), 26–28
Citation in format AMSBIB
\Bibitem{BecNar04}
\by E.~Beckenstein, L.~Narici
\paper Non-uniqueness of certain Hahn--Banach extensions
\jour Vladikavkaz. Mat. Zh.
\yr 2004
\vol 6
\issue 1
\pages 26--28
\mathnet{http://mi.mathnet.ru/vmj192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2082827}
\zmath{https://zbmath.org/?q=an:1096.46510}
Linking options:
  • https://www.mathnet.ru/eng/vmj192
  • https://www.mathnet.ru/eng/vmj/v6/i1/p26
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Владикавказский математический журнал
    Statistics & downloads:
    Abstract page:169
    Full-text PDF :70
    References:35
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024