Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik KRAUNC. Fiz.-Mat. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2022, Volume 40, Number 3, Pages 179–198
DOI: https://doi.org/10.26117/2079-6641-2022-40-3-179-198
(Mi vkam563)
 

INFORMATION AND COMPUTATION TECHNOLOGIES

Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type

V. A. Kima, R. I. Parovikba

a Vitus Bering Kamchatka State University
b Institute of Cosmophysical Research and Radio Wave Propagation FEB RAS
References:
Abstract: The article considers an implicit finite-difference scheme for the Duffing equation with a derivative of a fractional variable order of the Riemann-Liouville type. The issues of stability and convergence of an implicit finite-difference scheme are considered. Test examples are given to substantiate the theoretical results. Using the Runge rule, the results of the implicit scheme are compared with the results of the explicit scheme. Phase trajectories and oscillograms for a Duffing oscillator with a fractional derivative of variable order of the Riemann-Liouville type are constructed, chaotic modes are detected using the spectrum of maximum Lyapunov exponents and Poincare sections. Q-factor surfaces, amplitude-frequency and phase-frequency characteristics are constructed for the study of forced oscillations. The results of the study showed that the implicit finite-difference scheme shows more accurate results than the explicit one.
Keywords: Duffing oscillator, Runge rule, Riemann-Liouville operator, Grunwald-Letnikov operator, amplitude-frequency response, phase-frequency response, Q-factor, Lyapunov exponents, Poincare sections, oscillogram.
Funding agency
The name of the funding programme: Financial support was provided within the framework of the grant of the President of the Russian Federation, No. MD-758.2022.1.1. Organization that has provided funding: Ministry of Science and Higher Education.
Document Type: Article
UDC: 517.938
MSC: Primary 26A33; Secondary 34C15
Language: Russian
Citation: V. A. Kim, R. I. Parovik, “Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 40:3 (2022), 179–198
Citation in format AMSBIB
\Bibitem{KimPar22}
\by V.~A.~Kim, R.~I.~Parovik
\paper Implicit finite-difference scheme for a Duffing oscillator with a derivative of variable fractional order of the Riemann-Liouville type
\jour Vestnik KRAUNC. Fiz.-Mat. Nauki
\yr 2022
\vol 40
\issue 3
\pages 179--198
\mathnet{http://mi.mathnet.ru/vkam563}
\crossref{https://doi.org/10.26117/2079-6641-2022-40-3-179-198}
Linking options:
  • https://www.mathnet.ru/eng/vkam563
  • https://www.mathnet.ru/eng/vkam/v40/i3/p179
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik KRAUNC. Fiziko-Matematicheskie Nauki Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:50
    Full-text PDF :34
    References:28
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024