|
This article is cited in 1 scientific paper (total in 1 paper)
MATHEMATICAL MODELING
Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection
A. N. Elmurodov Uzbekistan Academy of Sciences V. I. Romanovskiy Institute of Mathematics
Abstract:
This article is concerned with a free boundary problem for semilinear parabolic equations, wbich describes the habitat segregation phenomenon in population ecology. The main goal is to show global existence, the uniqueness of solutions to the problem. A two-phase mathematical model with free boundaries for parabolic equations of the reaction-diffusion type is proposed. A priori estimates of Schauder type are established, on the basis of which the unique solvability of the problem is proved. The instability of each solution is fully determined using the comparison theorem.
Keywords:
mathematical model, a priori estimate, comparison theorems, uniquely solvability.
Citation:
A. N. Elmurodov, “Two-phase problem with a free boundary for systems of parabolic equations with a nonlinear term of convection”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 36:3 (2021), 110–122
Linking options:
https://www.mathnet.ru/eng/vkam494 https://www.mathnet.ru/eng/vkam/v36/i3/p110
|
Statistics & downloads: |
Abstract page: | 103 | Full-text PDF : | 42 | References: | 30 |
|