Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik KRAUNC. Fiz.-Mat. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2019, Volume 28, Number 3, Pages 32–39
DOI: https://doi.org/10.26117/2079-6641-2019-28-3-32-39
(Mi vkam359)
 

This article is cited in 7 scientific papers (total in 7 papers)

MATHEMATICS

Lyapunov inequality for an equation with fractional derivatives with different origins

L M. Eneeva

Institute of Applied Mathematics and Automation, 360000, Nalchik, Shortanova st., 89 A, Russia
Full-text PDF (221 kB) Citations (7)
References:
Abstract: We consider an ordinary differential equation of fractional order with the composition of left and rightsided fractional derivatives, which is a model equation of motion in fractal media. We find a necessary condition for existence of nontrivial solution of homogeneous Dirichlet problem for the equation under consideration. The condition has the form of integral estimate for the potential and is an analog of Lyapunov inequality.
Keywords: Riemann-Liouville fractional derivative, Caputo fractional derivative, Dirichlet problem, Lyapunov inequality.
Document Type: Article
UDC: 517.927
MSC: 26A33
Language: Russian
Citation: L M. Eneeva, “Lyapunov inequality for an equation with fractional derivatives with different origins”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 28:3 (2019), 32–39
Citation in format AMSBIB
\Bibitem{Ene19}
\by L~M.~Eneeva
\paper Lyapunov inequality for an equation with fractional derivatives with different origins
\jour Vestnik KRAUNC. Fiz.-Mat. Nauki
\yr 2019
\vol 28
\issue 3
\pages 32--39
\mathnet{http://mi.mathnet.ru/vkam359}
\crossref{https://doi.org/10.26117/2079-6641-2019-28-3-32-39}
Linking options:
  • https://www.mathnet.ru/eng/vkam359
  • https://www.mathnet.ru/eng/vkam/v28/i3/p32
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik KRAUNC. Fiziko-Matematicheskie Nauki Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:212
    Full-text PDF :121
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024