Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik KRAUNC. Fiz.-Mat. Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik KRAUNC. Fiziko-Matematicheskie Nauki, 2019, Volume 26, Number 1, Pages 71–77
DOI: https://doi.org/10.26117/2079-6641-2019-26-1-71-77
(Mi vkam343)
 

This article is cited in 1 scientific paper (total in 1 paper)

MATHEMATICAL MODELING

Study points of rest hereditarity dynamic systems Van der Pol-Duffing

E. R. Novikovàa, R. I. Parovikba

a Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia
b Institute of Cosmophysical Researches and Radio Wave Propagation, Far East Division, Russian Academy of Sciences
Full-text PDF (549 kB) Citations (1)
References:
Abstract: Using numerical modeling, oscillograms and phase trajectories were constructed to study the limit cycles of a van der Pol-Duffing nonlinear oscillatory system with a power memory. The simulation results showed that in the absence of a power memory ($\alpha=2$, $\beta=1$) or the classical van der Pol Duffing dynamical system, there is a single stable limit cycle, i.e. Lienar theorem holds. In the case of viscous friction ($\alpha=2$, $0<\beta<1$), there is a family of stable limit cycles of various shapes. In other cases, the limit cycle is destroyed in two scenarios: a Hopf bifurcation (limit cycle-limit point) or (limit cycle-aperiodic process). Further continuation of the research may be related to the construction of the spectrum of Lyapunov maximal exponents in order to identify chaotic oscillatory regimes for the considered hereditary dynamic system (HDS).
Keywords: limit cycle, exponential Van der Pol-Duffing oscillator, Hopf bifurcation,  oscillograms and phase trajectories.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation ÌÊ-1152.2018.1
This work was supported by the grant of the President of the Russian Federation No. MK-1152.2018.1.
Received: 14.02.2019
Bibliographic databases:
Document Type: Article
UDC: 512.24
MSC: 37N10
Language: Russian
Citation: E. R. Novikovà, R. I. Parovik, “Study points of rest hereditarity dynamic systems Van der Pol-Duffing”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 26:1 (2019), 71–77
Citation in format AMSBIB
\Bibitem{NovPar19}
\by E.~R.~Novikovà, R.~I.~Parovik
\paper Study points of rest hereditarity dynamic systems Van der Pol-Duffing
\jour Vestnik KRAUNC. Fiz.-Mat. Nauki
\yr 2019
\vol 26
\issue 1
\pages 71--77
\mathnet{http://mi.mathnet.ru/vkam343}
\crossref{https://doi.org/10.26117/2079-6641-2019-26-1-71-77}
\elib{https://elibrary.ru/item.asp?id=38190076}
Linking options:
  • https://www.mathnet.ru/eng/vkam343
  • https://www.mathnet.ru/eng/vkam/v26/i1/p71
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik KRAUNC. Fiziko-Matematicheskie Nauki Vestnik KRAUNC. Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:168
    Full-text PDF :48
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024