|
This article is cited in 7 scientific papers (total in 7 papers)
MATHEMATICAL MODELING
Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction
R. I. Parovikab a Institute of Cosmophysical Researches and Radio Wave Propagation Far-Eastern Branch, Russian Academy of Sciences, 684034, Kamchatskiy Kray, Paratunka, Mirnaya st., 7, Russia
b Vitus Bering Kamchatka State University, 683031, Petropavlovsk-Kamchatsky, Pogranichnaya st., 4, Russia
Abstract:
The paper considers a nonlinear fractal oscillatory Duffing system with friction. The numerical analysis of this system by a finite-difference scheme was carried out. Phase portraits and system solutions were constructed depending on fractional parameters
Keywords:
Gerasimov-Caputo operator, phase portrait, Duffing oscillator, finite-difference scheme.
Received: 13.04.2015
Citation:
R. I. Parovik, “Mathematical modeling of nonlocal oscillatory Duffing system with fractal friction”, Vestnik KRAUNC. Fiz.-Mat. Nauki, 2015, no. 1(10), 18–24; Bulletin KRASEC. Phys. & Math. Sci., 10:1 (2015), 16–21
Linking options:
https://www.mathnet.ru/eng/vkam17 https://www.mathnet.ru/eng/vkam/y2015/i1/p18
|
Statistics & downloads: |
Abstract page: | 285 | Russian version PDF: | 90 | English version PDF: | 13 | References: | 91 |
|