Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestnik Chelyabinsk. Gos. Univ.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika, 2008, Issue 10, Pages 44–48 (Mi vchgu92)  

Differential equations

On existence of solutions for elliptic equations at resonance

M. G. Lepchinski

Chelyabinsk State University
References:
Abstract: The paper devoted to generalization of one theorem by V. N. Pavlenko and V. V. Vinokur (2001) on existence for semilinear elliptic boundary value problems at resonance. In distinct from mentioned result, we consider unbounded nonlinearity and give new sufficient conditions on its growth for existance of solutions.
Document Type: Article
Language: Russian
Citation: M. G. Lepchinski, “On existence of solutions for elliptic equations at resonance”, Vestnik Chelyabinsk. Gos. Univ., 2008, no. 10, 44–48
Citation in format AMSBIB
\Bibitem{Lep08}
\by M.~G.~Lepchinski
\paper On existence of solutions for elliptic equations at resonance
\jour Vestnik Chelyabinsk. Gos. Univ.
\yr 2008
\issue 10
\pages 44--48
\mathnet{http://mi.mathnet.ru/vchgu92}
Linking options:
  • https://www.mathnet.ru/eng/vchgu92
  • https://www.mathnet.ru/eng/vchgu/y2008/i10/p44
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Vestnik Chelyabinskogo Gosudarstvennogo Universiteta. Matematika, Mekhanika, Informatika
    Statistics & downloads:
    Abstract page:85
    Full-text PDF :26
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024