Vestnik of Astrakhan State Technical University. Series: Management, Computer Sciences and Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Vestn. Astrakhan State Technical Univ. Ser. Management, Computer Sciences and Informatics:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Vestnik of Astrakhan State Technical University. Series: Management, Computer Sciences and Informatics, 2019, Number 2, Pages 7–18
DOI: https://doi.org/10.24143/2072-9502-2019-2-7-18
(Mi vagtu573)
 

This article is cited in 2 scientific papers (total in 2 papers)

MATHEMATICAL MODELING

Verification of unreliable parameters of the malicious information detection model

I. V. Kotenko, I. B. Parashchuk

Saint-Petersburg Institute of Informatics and Automation, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
Full-text PDF (454 kB) Citations (2)
References:
Abstract: The object of research is the process of detecting harmful information in the social networks and global network. There has been proposed the approach to verifying the parameters of a mathematical model of a random process of detecting malicious information with the unreliable, inaccurately (contradictory) given initial data. The approach is based on using stochastic equations of state and observation that are based on controlled Markov chains in finite differences. At the same time, verification of key parameters of a mathematical model of this type — elements of a matrix of one-step transition probabilities — is performed by using an extrapolating neural network. This allows to take into account and compensate the inaccuracy of the original data inherent in random processes of searching and detecting malicious information, as well as to increase the accuracy of decision-making on the assessment and categorization of digital network content to detect and counter information of this class.
Keywords: mathematical model, malicious data, model parameter, neural network, matrix of lonks, transition probabilities, parameter condition, estimation.
Funding agency Grant number
Russian Science Foundation 18-11-00302
Received: 13.02.2019
Bibliographic databases:
Document Type: Article
UDC: 004.056.53
Language: Russian
Citation: I. V. Kotenko, I. B. Parashchuk, “Verification of unreliable parameters of the malicious information detection model”, Vestn. Astrakhan State Technical Univ. Ser. Management, Computer Sciences and Informatics, 2019, no. 2, 7–18
Citation in format AMSBIB
\Bibitem{KotPar19}
\by I.~V.~Kotenko, I.~B.~Parashchuk
\paper Verification of unreliable parameters of the malicious information detection model
\jour Vestn. Astrakhan State Technical Univ. Ser. Management, Computer Sciences and Informatics
\yr 2019
\issue 2
\pages 7--18
\mathnet{http://mi.mathnet.ru/vagtu573}
\crossref{https://doi.org/10.24143/2072-9502-2019-2-7-18}
\elib{https://elibrary.ru/item.asp?id=37261366}
Linking options:
  • https://www.mathnet.ru/eng/vagtu573
  • https://www.mathnet.ru/eng/vagtu/y2019/i2/p7
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Вестник Астраханского государственного технического университета. Серия: Управление, вычислительная техника и информатика
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :25
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024