|
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2011, Volume 153, Book 1, Pages 195–210
(Mi uzku915)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Large deviations in the central limit theorem for endomorphisms of Euclidean space
V. T. Dubrovin Kazan (Volga Region) Federal University
Abstract:
Let $W$ be such a nonsingular integer matrix that $|\operatorname{det}W|>1$; $f$ is a real-valued periodic for every argument Lipschitz-continuous function defined on the unit hypercube from $R^d$. For a sequence $(f(tW^n))$, we prove the central limit theorem with large deviations within the interval $[1;\mathrm o(n^{1/8}/\ln n)]$.
Keywords:
limit theorem, endomorphisms, large deviations.
Received: 06.09.2010
Citation:
V. T. Dubrovin, “Large deviations in the central limit theorem for endomorphisms of Euclidean space”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 153, no. 1, Kazan University, Kazan, 2011, 195–210
Linking options:
https://www.mathnet.ru/eng/uzku915 https://www.mathnet.ru/eng/uzku/v153/i1/p195
|
|