|
Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, 2009, Volume 151, Book 4, Pages 150–159
(Mi uzku772)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Infinitesimal Harmonic Transformations and Ricci Solitons
S. E. Stepanova, I. G. Shandraa, V. N. Shelepovab a Finance Academy under the Government of the Russian Federation, Moscow
b Vladimir State Humanitarian University
Abstract:
A Ricci soliton on a smooth manifold $M$ is a triple $(g_0,\xi,\lambda)$, where $g_0$ is a complete Riemannian metric, $\xi$ a vector field, and $\lambda$ a constant such that the Ricci tensor $\mathrm{Ric}_0$ of $g_0$ satisfies the equation $-2\mathrm{Ric}_0=L_\xi g_0+2\lambda g_0$. In the paper, we study the geometry of Ricci solitons in dependence of the properties of the vector field $\xi$. In particular, we prove that this vector field is a harmonic transformation.
Keywords:
Riemannian manifold, infinitesimal harmonic transformation, Ricci soliton.
Received: 25.08.2009
Citation:
S. E. Stepanov, I. G. Shandra, V. N. Shelepova, “Infinitesimal Harmonic Transformations and Ricci Solitons”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151, no. 4, Kazan University, Kazan, 2009, 150–159
Linking options:
https://www.mathnet.ru/eng/uzku772 https://www.mathnet.ru/eng/uzku/v151/i4/p150
|
Statistics & downloads: |
Abstract page: | 505 | Full-text PDF : | 138 | References: | 59 |
|