Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, 2009, Volume 151, Book 4, Pages 72–92 (Mi uzku768)  

The Great Heritage of Sophus Lie

M. Rahula

Tartu University, Estonia
References:
Abstract: In the paper, we describe the floors $T^kM$, sector-bundles, and the theory of sector forms according to J. T. White. Using iterations of the tangent functor $T$, we construct tangent groups $T^kG$. Using the Lie–Cartan calculus, we study invariants of the group operators, their transformations under symmetries and stability.
Keywords: jets, tangent functor, floor, tangent group, stability of invariants.
Received: 27.05.2009
Document Type: Article
UDC: 514.7
Language: Russian
Citation: M. Rahula, “The Great Heritage of Sophus Lie”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 151, no. 4, Kazan University, Kazan, 2009, 72–92
Citation in format AMSBIB
\Bibitem{Rah09}
\by M.~Rahula
\paper The Great Heritage of Sophus Lie
\serial Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki
\yr 2009
\vol 151
\issue 4
\pages 72--92
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku768}
Linking options:
  • https://www.mathnet.ru/eng/uzku768
  • https://www.mathnet.ru/eng/uzku/v151/i4/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :167
    References:32
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024