|
Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, 2006, Volume 148, Book 2, Pages 54–64
(Mi uzku545)
|
|
|
|
This article is cited in 3 scientific papers (total in 3 papers)
Central limit theorem for endomorphisms of the Euclidean space
V. T. Dubrovin Kazan State University
Abstract:
Let $W$ be a non-degenerated integer-valued matrix such that $|\det W|>1$, $f(t)=$ $=~f(t_1,\ldots,t_d)$ be a real function periodic with respect to any argument, $f$ satisfy the condition $|f(t)-f(t')|\le A\|t-t'\|$ where $A$ — $\mathrm{const}$, $t,t'\in\overline\Omega_d=\{t:0\le t_i\le1,\ i=1,\ldots,d\}$. A central limit theorem for the sequence $(f(tW^n))$ with the rest $O(1/n^{1/2-\varepsilon})$ is established where $\varepsilon$ is an arbitrarily small positive number.
Received: 03.04.2006
Citation:
V. T. Dubrovin, “Central limit theorem for endomorphisms of the Euclidean space”, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 148, no. 2, Kazan University, Kazan, 2006, 54–64
Linking options:
https://www.mathnet.ru/eng/uzku545 https://www.mathnet.ru/eng/uzku/v148/i2/p54
|
Statistics & downloads: |
Abstract page: | 190 | Full-text PDF : | 49 | References: | 48 |
|