|
Kazanskii Gosudarstvennyi Universitet. Uchenye Zapiski. Seriya Fiziko-Matematichaskie Nauki, 2005, Volume 147, Book 1, Pages 148–153
(Mi uzku487)
|
|
|
|
On infinitesimal automorphisms of almost symplectic structures
V. I. Panzhenskij Penza State Pedagogical University
Abstract:
On the tangent bundle $TM$ of a manifold $M$ endowed with an almost symplectic structure $\omega$ and a linear connection $\nabla$ compatible with $\omega$, we consider the Riemannian metric $G$ which is Hermitian with respect to the canonical almost complex structure $J$ and the corresponding almost symplectic structure $\Omega$. We study the infinitesimal automorphisms of these structures on $TM$, and, in particular, prove that the dimension of the Lie algebra of natural automorphisms of $G$ and of $\Omega$ is less than or equal to $n(n+3)/2$.
Received: 25.12.2004
Citation:
V. I. Panzhenskij, “On infinitesimal automorphisms of almost symplectic structures”, Труды геометрического семинара, Kazan. Gos. Univ. Uchen. Zap. Ser. Fiz.-Mat. Nauki, 147, no. 1, Kazan University, Kazan, 2005, 148–153
Linking options:
https://www.mathnet.ru/eng/uzku487 https://www.mathnet.ru/eng/uzku/v147/i1/p148
|
Statistics & downloads: |
Abstract page: | 166 | Full-text PDF : | 52 | References: | 55 |
|