Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2023, Volume 165, Book 4, Pages 361–388
DOI: https://doi.org/10.26907/2541-7746.2023.4.361-388
(Mi uzku1644)
 

Incompatible deformations of elastic plates

S. A. Lychev

Ishlinsky Institute for Problems in Mechanics, Russian Academy of Sciences, Moscow, 119526 Russia
References:
Abstract: This article considers the methods for mathematical modeling of incompatible finite deformations of elastic plates by using the principles of the differential geometry theory underlying continuously distributed defects. Equilibrium equations were derived by asymptotic expansions of the finite strain measures with respect to two small parameters. One parameter defines the order of smallness of displacements from the reference shape (self-stressed state), while the other specifies the thickness. Asymptotic orders were different for the deflections and displacements in the plate plane, as well as for their derivatives. They were selected in such a way that, with additional assumptions on the possibility of ignoring certain terms in the resulting expressions and the compatibility of deformations, the equations could be reduced to the system of Föppl–von Kármán equations.
Keywords: theory of thin-walled elastic structures, incompatible finite deformations of elastic plates, mathematical modeling methods, theory of continuously distributed defects, system of Föppl–von Kármán equations, numerical and analytical method, iteration algorithm.
Funding agency Grant number
Russian Science Foundation 22-21-00457
This study was supported by the Russian Science Foundation (project no. 22-21-00457).
Received: 01.10.2023
Accepted: 12.11.2023
Document Type: Article
UDC: 539.3
Language: Russian
Citation: S. A. Lychev, “Incompatible deformations of elastic plates”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 165, no. 4, Kazan University, Kazan, 2023, 361–388
Citation in format AMSBIB
\Bibitem{Lyc23}
\by S.~A.~Lychev
\paper Incompatible deformations of elastic plates
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2023
\vol 165
\issue 4
\pages 361--388
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1644}
\crossref{https://doi.org/10.26907/2541-7746.2023.4.361-388}
Linking options:
  • https://www.mathnet.ru/eng/uzku1644
  • https://www.mathnet.ru/eng/uzku/v165/i4/p361
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:26
    Full-text PDF :26
    References:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024