Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, Volume 163, Book 3-4, Pages 291–303
DOI: https://doi.org/10.26907/2541-7746.2021.3-4.291-303
(Mi uzku1597)
 

This article is cited in 3 scientific papers (total in 3 papers)

Contact and almost contact structures on the real extension of the Lobachevsky plane

V. I. Pan'zhenskii, A. O. Rastrepina

Penza State University, Penza, 440026 Russia
Full-text PDF (610 kB) Citations (3)
References:
Abstract: In this article, we propose a group model $\mathbb{G}$ of a real extension of the Lobachevsky plane $\mathbb{H}^2 \times \mathbb{R}$. The group $\mathbb{G}$ is a Lie group of special-form matrices and a subgroup of the general linear group $GL(3, \mathbb{R})$. It is proved that, on the group model of the real extension of the Lobachevsky plane, there is a unique left-invariant almost contact metric structure with the Riemannian metric of the direct product that is invariant with respect to the isometry group. The concept of a linear connection compatible with the distribution is introduced. All left-invariant linear connections for which the tensors of the almost contact metric structure $(\eta, \xi, \varphi, g)$ are covariantly constant are found. Among the left-invariant differential $1$-forms, a canonical form defining a contact structure on $\mathbb{G}$ is distinguished. The left-invariant contact metric connections are found. There is a unique left-invariant connection for which all tensors of the almost contact metric structure and the canonical contact form are covariantly constant. It is proved that this connection is compatible with the contact distribution in the sense that a single geodesic tangent to the contact distribution passes through each point in each contact direction. Parametric equations of geodesics of the given connection are found. It is also established that the Levi-Civita connection of the Riemannian metric of the direct product is not a connection compatible with the contact distribution.
Keywords: Lie group, contact structure, almost contact structure, left-invariant connection, contact geodesics.
Received: 06.04.2021
Bibliographic databases:
Document Type: Article
UDC: 514.763
Language: Russian
Citation: V. I. Pan'zhenskii, A. O. Rastrepina, “Contact and almost contact structures on the real extension of the Lobachevsky plane”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163, no. 3-4, Kazan University, Kazan, 2021, 291–303
Citation in format AMSBIB
\Bibitem{PanRas21}
\by V.~I.~Pan'zhenskii, A.~O.~Rastrepina
\paper Contact and almost contact structures on the real extension of the Lobachevsky plane
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2021
\vol 163
\issue 3-4
\pages 291--303
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1597}
\crossref{https://doi.org/10.26907/2541-7746.2021.3-4.291-303}
Linking options:
  • https://www.mathnet.ru/eng/uzku1597
  • https://www.mathnet.ru/eng/uzku/v163/i3/p291
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:107
    Full-text PDF :26
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024