Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, Volume 163, Book 2, Pages 197–213
DOI: https://doi.org/10.26907/2541-7746.2021.2.197-213
(Mi uzku1591)
 

Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation

K. A. Kurmoiartseva, N. V. Kotelnikova, P. S. Volegov

Perm National Research Polytechnic University, Perm, 614990 Russia
References:
Abstract: The mechanical behavior of parts is significantly affected by the material's internal defective structure and its evolution. The paper aims to build a complex physically based mathematical model for describing the behavior of metals in the deformation and destruction process. The main deformation mechanisms of metals and alloys are considered. The mechanism and criterion for the microcrack nucleation, as well as a method for microcracks describing, are outlined. The structure and main relations of the developed model are presented, including a description of the most significant mechanisms carriers evolution implemented at each structural-scale level. A submodel of the evolution of dislocation densities during deformation due to such mechanisms as the new dislocations generation and opposite dislocations annihilation on close slipping systems is described. The algorithm for implementing the model and the results of modeling the dislocation structure evolution are presented. The multi-level approach based on the crystal plasticity and the introduction of internal variables is found to be sufficiently effective for describing both the propagation and nucleation of microcracks in metals.
Keywords: mathematical modeling, physical plasticity theories, crystal plasticity, deformation of polycrystalline materials, dislocation densities, microcrack nucleation, damage.
Funding agency Grant number
Russian Science Foundation 17-19-01292
The study was supported by the Russian Science Foundation (project no. 17-19-01292).
Received: 30.11.2020
Bibliographic databases:
Document Type: Article
UDC: 539.4
Language: Russian
Citation: K. A. Kurmoiartseva, N. V. Kotelnikova, P. S. Volegov, “Structure and relations of a multi-level mathematical model for describing microcracks formation during polycrystals deformation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163, no. 2, Kazan University, Kazan, 2021, 197–213
Citation in format AMSBIB
\Bibitem{KurKotVol21}
\by K.~A.~Kurmoiartseva, N.~V.~Kotelnikova, P.~S.~Volegov
\paper Structure and relations of a multi-level mathematical model for~describing microcracks formation during polycrystals deformation
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2021
\vol 163
\issue 2
\pages 197--213
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1591}
\crossref{https://doi.org/10.26907/2541-7746.2021.2.197-213}
Linking options:
  • https://www.mathnet.ru/eng/uzku1591
  • https://www.mathnet.ru/eng/uzku/v163/i2/p197
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:231
    Full-text PDF :136
    References:23
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024