Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2021, Volume 163, Book 1, Pages 5–20
DOI: https://doi.org/10.26907/2541-7746.2021.1.5-20
(Mi uzku1577)
 

This article is cited in 2 scientific papers (total in 2 papers)

Convergence of the Galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers

A. I. Repina

Kazan Federal University, Kazan, 420008 Russia
Full-text PDF (659 kB) Citations (2)
References:
Abstract: This paper investigates an eigenvalue problem for the Helmholtz equation on the plane modeling the laser radiation of two-dimensional microdisk resonators. It was reduced to an eigenvalue problem for a holomorphic Fredholm operator-valued function $A(k)$. For its numerical solution, the Galerkin method was proposed, and its convergence was proved. Namely, a sequence of the finite-dimensional holomorphic operator functions $A_n(k)$ that converges regularly to $A(k)$ was constructed. Further, it was established that there is a sequence of eigenvalues $k_n$ of the operator-valued functions $A_n(k)$ converging to $k_0$ for each eigenvalue $k_0$ of the operator-valued function $A(k)$. If $\{k_n \}_{n \in {N}}$ is a sequence of eigenvalues of the operator-valued functions $A_n(k)$ converging to a number of $k_0$, then $k_0$ is an eigenvalue of $A(k)$. The estimates for the rate of convergence of $\{k_n\} _ {n \in {N}}$ to $k_0$ depend either on the order of the pole $k_0$ of the operator-valued function $A^{-1}(k)$, or on the algebraic multiplicities of all eigenvalues of $A_n(k)$ in a neighborhood of $k_0$, or on the number of different eigenvalues of $A_n(k)$ in this neighborhood. The reasoning is based on the fundamental results of the theory of holomorphic operator-valued functions and is important for the theory of microdisk lasers, because it significantly expands the class of devices interesting for applications that allow mathematical modeling based on numerical methods that are strictly justified.
Keywords: microdisk laser, nonlinear eigenvalue problem, system of Muller boundary integral equations, Galerkin method.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation
The study was supported by the Kazan Federal University Strategic Academic Leadership Program.
Received: 15.01.2021
Bibliographic databases:
Document Type: Article
UDC: 517.958
Language: Russian
Citation: A. I. Repina, “Convergence of the Galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 163, no. 1, Kazan University, Kazan, 2021, 5–20
Citation in format AMSBIB
\Bibitem{Rep21}
\by A.~I.~Repina
\paper Convergence of the Galerkin method for solving a nonlinear problem of the eigenmodes of microdisk lasers
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2021
\vol 163
\issue 1
\pages 5--20
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1577}
\crossref{https://doi.org/10.26907/2541-7746.2021.1.5-20}
Linking options:
  • https://www.mathnet.ru/eng/uzku1577
  • https://www.mathnet.ru/eng/uzku/v163/i1/p5
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025