Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2020, Volume 162, Book 3, Pages 322–334
DOI: https://doi.org/10.26907/2541-7746.2020.3.322-334
(Mi uzku1564)
 

This article is cited in 4 scientific papers (total in 4 papers)

Refined estimates of the decoder complexity in the model of cellular circuits with functional and switching elements

S. A. Lozhkin, V. S. Zizov

footnotesize Lomonosov Moscow State University, Moscow, 119991 Russia
Full-text PDF (831 kB) Citations (4)
References:
Abstract: The model of cellular circuits was considered in a single basis of functional and switching elements, which is built in accordance with the standard basis $\text{B}_0$ consisting of Boolean functions $x_1 \& x_2, $ $x_1\lor x_2,$ $ \overline{x_1}$. In this model, both inputs and outputs of the cellular circuit $\Sigma$ associated with various input and output Boolean variables, respectively, are irreversibly located on the border of the corresponding rectangular lattice, and the cellular circuit $\Sigma$ itself corresponds, structurally and functionally, to a scheme of functional elements $S$ in the basis $\text{B}_0$ with the same sets of input and output Boolean variables.
We studied the complexity (area) of cellular circuits with $n$ inputs and $2^n$ outputs that implements a system of all $2^n$ elementary conjunctions of rank $n$ from input Boolean variables, i.e., a binary decoder with power $n$. It was proved that the smallest possible area of a cellular circuit implementing such a decoder, provided that $n = 1, 2, \dots$, is equal to $n2^{n-1}(1+\mathcal{O}({1}/{n}))$. This is the first time when so-called asymptotic estimates of a high degree of accuracy, i.e., estimates with a relative error $\mathcal{O}({1}/{n})$, were obtained for it.
Keywords: functional elements, switching elements, cellular circuits, area, decoder, asymptotic estimates.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00800_а
The study was supported by the Moscow Center for Fundamental and Applied Mathematics and the Russian Foundation for Basic Research (project no. 18-01-00800).
Received: 12.08.2020
Bibliographic databases:
Document Type: Article
UDC: 519.95
Language: Russian
Citation: S. A. Lozhkin, V. S. Zizov, “Refined estimates of the decoder complexity in the model of cellular circuits with functional and switching elements”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 162, no. 3, Kazan University, Kazan, 2020, 322–334
Citation in format AMSBIB
\Bibitem{LozZiz20}
\by S.~A.~Lozhkin, V.~S.~Zizov
\paper Refined estimates of the decoder complexity in the model of cellular circuits with functional and switching elements
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2020
\vol 162
\issue 3
\pages 322--334
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1564}
\crossref{https://doi.org/10.26907/2541-7746.2020.3.322-334}
Linking options:
  • https://www.mathnet.ru/eng/uzku1564
  • https://www.mathnet.ru/eng/uzku/v162/i3/p322
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:248
    Full-text PDF :121
    References:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024