Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 4, Pages 750–761 (Mi uzku1493)  

The Gakhov barriers and extremals for the level lines

A. V. Kazantsev

Kazan Federal University, Kazan, 420008 Russia
References:
Abstract: The regular Gakhov class $\mathcal{G}_1$ consists of all holomorphic and locally univalent functions $f$ in the unit disk with only one root of the Gakhov equation, which is the maximum of the hyperbolic derivative (conformal radius) of the function $f$. For the classes $\mathcal{H}$ defined by the conditions of Nehari and Becker's type, as well as by some other inequalities, we have solved the problem of calculation of the Gakhov barrier, i.e., the value $\rho(\mathcal{H}) = \sup \{r\ge 0: \mathcal{H}_r\subset \mathcal{G}_1\}$, where $\mathcal{H}_r = \{f_r: f\in \mathcal{H}\}$, $0\le r\le 1$, and of an effective description of the Gakhov extremal, i.e., the set of $f$'s in $\mathcal{H}$ with the level sets $f_r$ leaving $\mathcal{G}_1$ when $r$ passes through $\rho(\mathcal{H})$. Both possible variants of bifurcation, which provide an exit out of $\mathcal{G}_1$ along the level lines, are represented.
Keywords: Gakhov equation, Gakhov set, hyperbolic derivative, inner mapping (conformal) radius, Gakhov width, Gakhov barrier, Gakhov extremal.
Funding agency Grant number
Russian Foundation for Basic Research 18-41-160017
The study was supported by the Russian Foundation for Basic Research and the Government of the Republic of Tatarstan (project no. 18-41-160017).
Received: 22.03.2018
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. V. Kazantsev, “The Gakhov barriers and extremals for the level lines”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 4, Kazan University, Kazan, 2018, 750–761
Citation in format AMSBIB
\Bibitem{Kaz18}
\by A.~V.~Kazantsev
\paper The Gakhov barriers and extremals for the level lines
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 4
\pages 750--761
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1493}
Linking options:
  • https://www.mathnet.ru/eng/uzku1493
  • https://www.mathnet.ru/eng/uzku/v160/i4/p750
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:97
    Full-text PDF :35
    References:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024