Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2, Pages 384–391 (Mi uzku1464)  

Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks

V. Zh. Sakbaev, D. V. Zavadsky

Moscow Institute of Physics and Technology, Dolgoprudny, 141701 Russia
References:
Abstract: Averaging of random shift operators on a space of the square integrable by shift-invariant measure complex-valued functions on linear topological spaces has been studied. The case of the $l_\infty$ space has been considered as an example.
A shift-invariant measure on the $l_\infty$ space, which was constructed by Caratheodory's scheme, is $\sigma$-additive, but not $\sigma$-finite. Furthermore, various approximations of measurable sets have been investigated. One-parameter groups of shifts along constant vector fields in the $l_\infty$ space and semigroups of shifts to a random vector, the distribution of which is given by a collection of the Gaussian measures, have been discussed. A criterion of strong continuity for a semigroup of shifts along a constant vector field has been established.
Conditions for collection of the Gaussian measures, which guarantee the semigroup property and strong continuity of averaged one-parameter collection of linear operators, have been defined.
Keywords: strongly continuous semigroups, averaging of operator semigroups, shift-invariant measures, square integrable functions.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation
The work was performed according to the Russian Government Program of Competitive Growth of Moscow Institute of Physics and Technology (project 5-100).
Received: 17.10.2017
Bibliographic databases:
Document Type: Article
UDC: 519.2
Language: English
Citation: V. Zh. Sakbaev, D. V. Zavadsky, “Shift-invariant measures on infinite-dimensional spaces: integrable functions and random walks”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 2, Kazan University, Kazan, 2018, 384–391
Citation in format AMSBIB
\Bibitem{SakZav18}
\by V.~Zh.~Sakbaev, D.~V.~Zavadsky
\paper Shift-invariant measures on~infinite-dimensional spaces: integrable functions and random walks
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 2
\pages 384--391
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1464}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460032400020}
Linking options:
  • https://www.mathnet.ru/eng/uzku1464
  • https://www.mathnet.ru/eng/uzku/v160/i2/p384
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024