Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2, Pages 339–349 (Mi uzku1459)  

Explicit formulas for chromatic polynomials of some series-parallel graphs

E. Yu. Lerner, S. A. Mukhamedjanova

Kazan Federal University, Kazan, 420008 Russia
References:
Abstract: The main goal of our paper is to present explicit formulas for chromatic polynomials of some planar series-parallel graphs (sp-graphs). The necklace-graph considered in this paper is the simplest non-trivial sp-graph. We have provided the explicit formula for calculating the chromatic polynomial of common sp-graphs. In addition, we have presented the explicit formulas for calculating chromatic polynomials of the ring of the necklace graph and the necklace of the necklace graph. Chromatic polynomials of the necklace graph and the ring of the necklace graph have been initially obtained by transition to the dual graph and the subsequent using of the flow polynomial. We have also used the technique of finite Fourier transformations. The use of the partition function of the Potts model is a more general way to evaluate chromatic polynomials. In this method, we have used the parallel- and series-reduction identities that were introduced by A. Sokal. We have developed this idea and introduced the transformation of the necklace-graph reduction. Using this transformation makes it easier to calculate chromatic polynomials for the necklace-graph, the ring of the necklace graph, as well as allows to calculate the chromatic polynomial of the necklace of the necklace graph.
Keywords: chromatical polynomial, partition function of Potts model, Tutte polynomial, Fourier transform, series-parallel graph, necklace graph.
Received: 27.11.2017
Bibliographic databases:
Document Type: Article
UDC: 519.174.7
Language: English
Citation: E. Yu. Lerner, S. A. Mukhamedjanova, “Explicit formulas for chromatic polynomials of some series-parallel graphs”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 2, Kazan University, Kazan, 2018, 339–349
Citation in format AMSBIB
\Bibitem{LerMuk18}
\by E.~Yu.~Lerner, S.~A.~Mukhamedjanova
\paper Explicit formulas for chromatic polynomials of some series-parallel graphs
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 2
\pages 339--349
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1459}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460032400015}
Linking options:
  • https://www.mathnet.ru/eng/uzku1459
  • https://www.mathnet.ru/eng/uzku/v160/i2/p339
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024