Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2, Pages 327–338 (Mi uzku1458)  

Manifold learning based on kernel density estimation

A. P. Kuleshova, A. V. Bernsteinab, Yu. A. Yanovichabc

a Skolkovo Institute of Science and Technology, Moscow, 143026 Russia
b Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
c National Research University Higher School of Economics, Moscow, 101000 Russia
References:
Abstract: The problem of unknown high-dimensional density estimation has been considered. It has been suggested that the support of its measure is a low-dimensional data manifold. This problem arises in many data mining tasks. The paper proposes a new geometrically motivated solution to the problem in the framework of manifold learning, including estimation of an unknown support of the density.
Firstly, the problem of tangent bundle manifold learning has been solved, which resulted in the transformation of high-dimensional data into their low-dimensional features and estimation of the Riemann tensor on the data manifold. Following that, an unknown density of the constructed features has been estimated with the use of the appropriate kernel approach. Finally, using the estimated Riemann tensor, the final estimator of the initial density has been constructed.
Keywords: dimensionality reduction, manifold learning, manifold valued data, density estimation on manifold.
Funding agency Grant number
Russian Science Foundation 14-50-00150
The study by A.V. Bernstein and Yu.A. Yanovich was supported by the Russian Science Foundation (project no. 14-50-00150).
Received: 17.10.2017
Bibliographic databases:
Document Type: Article
UDC: 519.23
Language: English
Citation: A. P. Kuleshov, A. V. Bernstein, Yu. A. Yanovich, “Manifold learning based on kernel density estimation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 2, Kazan University, Kazan, 2018, 327–338
Citation in format AMSBIB
\Bibitem{KulBerYan18}
\by A.~P.~Kuleshov, A.~V.~Bernstein, Yu.~A.~Yanovich
\paper Manifold learning based on~kernel density estimation
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 2
\pages 327--338
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1458}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460032400014}
Linking options:
  • https://www.mathnet.ru/eng/uzku1458
  • https://www.mathnet.ru/eng/uzku/v160/i2/p327
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024