Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2, Pages 243–249 (Mi uzku1448)  

This article is cited in 1 scientific paper (total in 1 paper)

On an analog of the M. G. Krein theorem for measurable operators

A. M. Bikchentaev

Kazan Federal University, Kazan, 420008 Russia
Full-text PDF (587 kB) Citations (1)
References:
Abstract: Let ${\mathcal M}$ be a von Neumann algebra of operators on a Hilbert space $\mathcal H$ and $\tau$ be a faithful normal semifinite trace on $\mathcal{M}$. Let $\mu_t(T)$, $t>0$, be a rearrangement of a $\tau$-measurable operator $T$. Let us consider a $\tau$-measurable operator $A$, such that $\mu_t(A)>0$ for all $t>0$ and assume that $\mu_{2t}(A)/\mu_t(A) \to 1$ as $t \to \infty$. Let a $\tau$-compact operator $S$ be so that the operator $I+S$ is right invertible, where $I$ is the unit of ${\mathcal M}$. Then, for a $\tau$-measurable operator $B$, such that $A=B(I+S)$, we have $\mu_{t}(A)/\mu_t(B) \to 1$ as $t \to \infty$. It is an analog of the M.G. Krein theorem (for $\mathcal{M}=\mathcal{B}(\mathcal{H})$ and $\tau =\mathrm{tr}$, theorem 11.4, ch. V [Gohberg I.C., Krein M.G. Introduction to the theory of linear nonselfadjoint operators. In: Translations of Mathematical Monographs. Vol. 18. Providence, R.I., Amer. Math. Soc., 1969. 378 p.] for $\tau$-measurable operators.
Keywords: Hilbert space, von Neumann algebra, normal trace, $\tau$-measurable operator, distribution function, rearrangement, $\tau$-compact operator.
Funding agency Grant number
Ministry of Education and Science of the Russian Federation 1.1515.2017/4.6
1.9773.2017/8.9
This work was supported by subsidies allocated to Kazan Federal University for the state assignment in the sphere of scientific activities (projects nos. 1.1515.2017/4.6 and 1.9773.2017/8.9).
Received: 12.10.2017
Bibliographic databases:
Document Type: Article
UDC: 517.983:517.986
Language: English
Citation: A. M. Bikchentaev, “On an analog of the M. G. Krein theorem for measurable operators”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 2, Kazan University, Kazan, 2018, 243–249
Citation in format AMSBIB
\Bibitem{Bik18}
\by A.~M.~Bikchentaev
\paper On an analog of the M.\,G.~Krein theorem for measurable operators
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 2
\pages 243--249
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1448}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460032400004}
Linking options:
  • https://www.mathnet.ru/eng/uzku1448
  • https://www.mathnet.ru/eng/uzku/v160/i2/p243
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024