Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 2, Pages 229–242 (Mi uzku1447)  

Manifold learning in statistical tasks

A. V. Bernsteinab

a Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, 127051 Russia
b Skolkovo Institute of Science and Technology, Moscow, 143026 Russia
References:
Abstract: Many tasks of data analysis deal with high-dimensional data, and curse of dimensionality is an obstacle to the use of many methods for their solving. In many applications, real-world data occupy only a very small part of high-dimensional observation space, the intrinsic dimension of which is essentially lower than the dimension of this space. A popular model for such data is a manifold model in accordance with which data lie on or near an unknown low-dimensional data manifold (DM) embedded in an ambient high-dimensional space. Data analysis tasks studied under this assumption are referred to as the manifold learning ones. Their general goal is to discover a low-dimensional structure of high-dimensional manifold valued data from the given dataset. If dataset points are sampled according to an unknown probability measure on the DM, we face statistical problems on manifold valued data. The paper gives a short review of statistical problems regarding high-dimensional manifold valued data and the methods for solving them.
Keywords: data analysis, mathematical statistics, manifold learning, manifold estimation, density on manifold estimation, regression on manifolds.
Funding agency Grant number
Russian Science Foundation 14-50-00150
This work was supported by the Russian Science Foundation (project no. 14-50-00150).
Received: 17.10.2017
Bibliographic databases:
Document Type: Article
UDC: 519.23
Language: English
Citation: A. V. Bernstein, “Manifold learning in statistical tasks”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 2, Kazan University, Kazan, 2018, 229–242
Citation in format AMSBIB
\Bibitem{Ber18}
\by A.~V.~Bernstein
\paper Manifold learning in statistical tasks
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 2
\pages 229--242
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1447}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000460032400003}
Linking options:
  • https://www.mathnet.ru/eng/uzku1447
  • https://www.mathnet.ru/eng/uzku/v160/i2/p229
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024