Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2018, Volume 160, Book 1, Pages 165–182 (Mi uzku1442)  

This article is cited in 2 scientific papers (total in 2 papers)

Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method

V. I. Vasilyev, M. V. Vasilyeva, A. V. Grigorev, G. A. Prokopiev

M. K. Ammosov North-Eastern Federal University, Yakutsk, 677000 Russia
References:
Abstract: Numerical simulation of the two-phase fluid flow in a fractured porous media using the double porosity model with a highly inhomogeneous permeability coefficient has been studied. A system of equations has been presented for the case of two-phase filtration without capillary and gravitational effects, which is a connected system of equations for pressure and saturation in a porous medium that contains a system of cracks. Different variants of specifying the flow functions between the porous medium and cracks have been considered. The numerical implementation for velocity and pressure approximation is based on the finite element method. To discretize the saturation equation, the classical Galerkin method with counter-flow approximation has been used. The results of numerical calculations for the model problem using various interflow functions have been presented.
Keywords: two-phase filtration, inhomogeneous media, fractured-porous media, double porosity model, interflow functions, finite element method, numerical stabilization.
Funding agency Grant number
Russian Foundation for Basic Research 17-01-00732
Ministry of Education and Science of the Russian Federation 14.Y26.31.0013
Russian Science Foundation 17-71-10106
The study was supported by the Russian Foundation for Basic Research (project no. 17-01-00732) (V. I. Vasilyev: theory, problem statement), Megagrant of the Government of the Russian Federation (grant no. 14.Y26.31.0013) (M. V. Vasilyeva: numerical algorithm; G. A. Prokopiev: nonlinear case implementation), and by the Russian Science Foundation (project no. 17-71-10106) (A. V. Grigorev: linear case implementation, experiments).
Received: 18.12.2017
Bibliographic databases:
Document Type: Article
UDC: 519.635.6
Language: Russian
Citation: V. I. Vasilyev, M. V. Vasilyeva, A. V. Grigorev, G. A. Prokopiev, “Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 160, no. 1, Kazan University, Kazan, 2018, 165–182
Citation in format AMSBIB
\Bibitem{VasVasGri18}
\by V.~I.~Vasilyev, M.~V.~Vasilyeva, A.~V.~Grigorev, G.~A.~Prokopiev
\paper Mathematical modeling of the two-phase fluid flow in inhomogeneous fractured porous media using the double porosity model and finite element method
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2018
\vol 160
\issue 1
\pages 165--182
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1442}
Linking options:
  • https://www.mathnet.ru/eng/uzku1442
  • https://www.mathnet.ru/eng/uzku/v160/i1/p165
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:402
    Full-text PDF :257
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024