Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, Volume 159, Book 3, Pages 318–326 (Mi uzku1411)  

This article is cited in 2 scientific papers (total in 2 papers)

On the exit of the Gakhov set along the family of Avkhadiev's classes

A. V. Kazantsev

Kazan Federal University, Kazan, 420008 Russia
Full-text PDF (600 kB) Citations (2)
References:
Abstract: Professor F. G. Avkhadiev has played a crucial role in the formation of the finite-valence theory for the classes of holomorphic functions with bounded distortion. We call them the Avkhadiev classes, and their elements are called the Avkhadiev functions. In this paper, we have studied the connections of the above classes with the Gakhov set $\mathcal G$ consisting of all holomorphic and locally univalent functions $f$ in the unit disk $\mathbb D$ with (no more than) the unique root of the Gakhov equation in $\mathbb D$. In particular, for the one-parameter series of the Avkhadiev classes constructing on the rays $\alpha\ln f'$, $\alpha\ge0$, where $|f'(\zeta)|\in(e^{-\pi/2},e^{\pi/2})$, $\zeta\in\mathbb D$, and $f''(0)=0$, we have shown that the Gakhov barrier (the exit value of the parameter out of $\mathcal G$) of the given series coinsides with its Avkhadiev barrier (the exit value of the parameter out of the univalence class), and we have found the extremal family of the Avkhadiev functions. This family is characterized by the coincidence of its individual exit value out of $\mathcal G$ and the Gakhov barrier for the whole series.
Keywords: Gakhov set, Gakhov equation, Gakhov width, inner mapping (conformal) radius, hyperbolic derivative, admissible functional, Avkhadiev classes, Gakhov barrier, Avkhadiev barrier.
Received: 27.06.2017
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. V. Kazantsev, “On the exit of the Gakhov set along the family of Avkhadiev's classes”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 3, Kazan University, Kazan, 2017, 318–326
Citation in format AMSBIB
\Bibitem{Kaz17}
\by A.~V.~Kazantsev
\paper On the exit of the Gakhov set along the family of Avkhadiev's classes
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2017
\vol 159
\issue 3
\pages 318--326
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1411}
\elib{https://elibrary.ru/item.asp?id=32265839}
Linking options:
  • https://www.mathnet.ru/eng/uzku1411
  • https://www.mathnet.ru/eng/uzku/v159/i3/p318
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :60
    References:67
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024