Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2017, Volume 159, Book 1, Pages 33–46 (Mi uzku1390)  

This article is cited in 3 scientific papers (total in 3 papers)

Sectio aurea conditions for Mityuk's radius of two-connected domains

A. V. Kazantsev

Kazan Federal University, Kazan, 420008 Russia
Full-text PDF (627 kB) Citations (3)
References:
Abstract: Connection of an exterior inverse boundary value problem with the critical points of some surface is one of the central themes in the theory of exterior inverse boundary value problems for analytic functions. In the simply connected case, such a surface is defined by the inner mapping radius; in the multiply connected one, by the function $\Omega(w)$ such that $\mathrm M(w)=(2\pi)^{-1}\ln\Omega(w)$ is Mityuk's version of a generalized reduced module. In the present paper, the relation between the curvature of the surface $\Omega=\Omega(w)$ with the Schwarzian derivatives of the mapping functions and with the Bergman kernel functions $k_0(w,\overline\omega)$ and $l_0(w,\omega)$ is established for an arbitrary multiply connected domain. When passing to two-connected domains, due to the choice of the ring as a canonical domain, we construct the conditions for the critical points of Mityuk's radius to concentrate on the golden section circle of the ring. Finally, we show that the minimal collection of the critical points of the Mityuk radius in the two-connected case, consisting of one maximum and one saddle, is attained for the linear-fractional solution of the exterior inverse boundary value problem.
Keywords: exterior inverse boundary value problem, multiply connected domain, Gakhov equation, Mityuk's radius, inner mapping (conformal) radius, hyperbolic derivative.
Received: 22.12.2016
Bibliographic databases:
Document Type: Article
UDC: 517.54
Language: Russian
Citation: A. V. Kazantsev, “Sectio aurea conditions for Mityuk's radius of two-connected domains”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 159, no. 1, Kazan University, Kazan, 2017, 33–46
Citation in format AMSBIB
\Bibitem{Kaz17}
\by A.~V.~Kazantsev
\paper Sectio aurea conditions for Mityuk's radius of two-connected domains
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2017
\vol 159
\issue 1
\pages 33--46
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1390}
\elib{https://elibrary.ru/item.asp?id=29434372}
Linking options:
  • https://www.mathnet.ru/eng/uzku1390
  • https://www.mathnet.ru/eng/uzku/v159/i1/p33
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
    Statistics & downloads:
    Abstract page:416
    Full-text PDF :142
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024