Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2016, Volume 158, Book 2, Pages 243–261 (Mi uzku1366)  

This article is cited in 8 scientific papers (total in 8 papers)

Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method

M. V. Vasilyevaab, V. I. Vasilyeva, T. S. Timofeevaa

a M. K. Ammosov North-Eastern Federal University, Yakutsk, 677000 Russia
b bInstitute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090 Russia
References:
Abstract: The finite element approximation of the convective and diffusive transport equation has been considered. Different methods for stabilization of the finite element approximation have been discussed: upwind approximation of the convective term using artificial diffusion (AD) and streamline upwind Petrov–Galerkin (SUPG) method, both used for stabilization of the classic Galerkin method. Another approach to approximation of the transport equation related to the discontinuous Galerkin method (DG) has been investigated. This method also allows to approximate the convective term using upwind schemes. The results of the numerical comparison of the considered schemes for the convective and diffusive transport problems in a porous media have been presented. The flow and transport in a highly contrast heterogeneous porous media that lead to the significant pressure gradients and, therefore, high velocities have been considered as test problems.
Keywords: convection-diffusion equation, filtration, heterogeneous porous media, finite element method, numerical stabilization, classic Galerkin method, discontinuous Galerkin method.
Funding agency Grant number
Russian Science Foundation 15-11-10024
Russian Foundation for Basic Research 15-31-20856
This study was supported in part by the Russian Science Foundation (project no. 15-11-10024) and the Russian Foundation for Basic Research (project no. 15-31-20856).
Received: 23.03.2016
Bibliographic databases:
Document Type: Article
UDC: 519.63
Language: Russian
Citation: M. V. Vasilyeva, V. I. Vasilyev, T. S. Timofeeva, “Numerical solution of the convective and diffusive transport problems in a heterogeneous porous medium using finite element method”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 158, no. 2, Kazan University, Kazan, 2016, 243–261
Citation in format AMSBIB
\Bibitem{VasVasTim16}
\by M.~V.~Vasilyeva, V.~I.~Vasilyev, T.~S.~Timofeeva
\paper Numerical solution of the convective and diffusive transport problems in a~heterogeneous porous medium using finite element method
\serial Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
\yr 2016
\vol 158
\issue 2
\pages 243--261
\publ Kazan University
\publaddr Kazan
\mathnet{http://mi.mathnet.ru/uzku1366}
\elib{https://elibrary.ru/item.asp?id=26416802}
Linking options:
  • https://www.mathnet.ru/eng/uzku1366
  • https://www.mathnet.ru/eng/uzku/v158/i2/p243
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024