|
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2013, Volume 155, Book 3, Pages 91–104
(Mi uzku1218)
|
|
|
|
This article is cited in 2 scientific papers (total in 2 papers)
Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem
V. S. Zheltukhina, S. I. Solov'evb, P. S. Solov'evc, V. Yu. Chebakovaa a Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, Russia
b Institute of Computer Mathematics and Information Technologies, Kazan (Volga Region) Federal University, Kazan, Russia
c Kazan (Volga Region) Federal University, Kazan, Russia
Abstract:
We derive a condition for the existence of the minimal eigenvalue answering the positive eigenfunction of the nonlinear eigenvalue problem for an ordinary differential equation. This problem is approximated by a mesh scheme of the finite element method. The convergence of the approximate solutions to the exact ones is investigated. The theoretical results are illustrated by numerical experiments for a model problem.
Keywords:
eigenvalue, positive eigenfunction, nonlinear eigenvalue problem, ordinary differential equation, Sturm–Liouville problem, finite element method.
Received: 22.05.2013
Citation:
V. S. Zheltukhin, S. I. Solov'ev, P. S. Solov'ev, V. Yu. Chebakova, “Computation of the minimal eigenvalue for a nonlinear Sturm–Liouville problem”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 155, no. 3, Kazan University, Kazan, 2013, 91–104
Linking options:
https://www.mathnet.ru/eng/uzku1218 https://www.mathnet.ru/eng/uzku/v155/i3/p91
|
Statistics & downloads: |
Abstract page: | 365 | Full-text PDF : | 117 | References: | 67 |
|