|
Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 2012, Volume 154, Book 3, Pages 121–128
(Mi uzku1144)
|
|
|
|
On the Partial Sums of the Fourier Series of Functions of Bounded Variation
L. D. Gogoladze, V. Sh. Tsagareishvili Tbilisi Ivane Javakhishvili State University
Abstract:
S. Banach [Sur la divergence des séries orthogonales. Studia Math., 1940, vol. 9, pp. 139–155] proved that for any function $f(x)\in L_2(I)$ $(I=[0,1]$, $f(x)\not\sim 0)$ there exists an orthonormal system (ONS) $(\varphi_n(x))$ such that $\varlimsup\limits_{n\to \infty} |S_n(f,x)|=+\infty$ almost everywhere on $I$, where $S_n(f,x)$ are the partial sums of the Fourier series of a function $f(x)$ with respect to the system $(\varphi_n(x))=\Phi$.
This paper finds necessary and sufficient conditions which should be satisfied by ONS so that the partial sums of the Fourier series of functions with finite variation be uniformly bounded on $I$.
Keywords:
bounded variation, partial sums, subsystem.
Received: 15.03.2012
Citation:
L. D. Gogoladze, V. Sh. Tsagareishvili, “On the Partial Sums of the Fourier Series of Functions of Bounded Variation”, Uchenye Zapiski Kazanskogo Universiteta. Seriya Fiziko-Matematicheskie Nauki, 154, no. 3, Kazan University, Kazan, 2012, 121–128
Linking options:
https://www.mathnet.ru/eng/uzku1144 https://www.mathnet.ru/eng/uzku/v154/i3/p121
|
Statistics & downloads: |
Abstract page: | 447 | Full-text PDF : | 148 | References: | 75 |
|