|
Mathematics
On automorphism groups of endomorphism semigroups of finite elementary Abelian groups
A. A. Bayramyan Yerevan State University, Faculty of Mathematics and Mechanics
Abstract:
In this article, we explore the automorphisms of endomorphism semigroups and automorphism groups of the finite elementary Abelian groups. In particular, we prove that $\mathrm{Aut}(\mathrm{End}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p))$ can be canonically embedded into $\mathrm{Aut}(\mathrm{Aut}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p))$ using an elementary approach based on matrix operations. We also show that all automorphisms of $\mathrm{End}(\mathbb{Z}_p\oplus\mathbb{Z}_p\oplus\cdots\oplus\mathbb{Z}_p)$ are inner.
Keywords:
automorphisms of matrix semigroups, finite elementary Abelian groups, automorphisms of endomorphism semigroup.
Received: 16.05.2022 Revised: 20.06.2022 Accepted: 29.06.2022
Citation:
A. A. Bayramyan, “On automorphism groups of endomorphism semigroups of finite elementary Abelian groups”, Proceedings of the YSU, Physical and Mathematical Sciences, 56:2 (2022), 49–57
Linking options:
https://www.mathnet.ru/eng/uzeru973 https://www.mathnet.ru/eng/uzeru/v56/i2/p49
|
Statistics & downloads: |
Abstract page: | 80 | Full-text PDF : | 19 | References: | 29 |
|