|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2016, Issue 1, Pages 22–29
(Mi uzeru94)
|
|
|
|
Mathematics
On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$
R. G. Melikbekyan Yerevan State University
Abstract:
Let the sequence $\{a_{k}\}_{k=1}^{\infty},$ $a_{k}\searrow0$ with $\{a_{k}\}_{k=1}^{\infty}\notin l_{2},$ and Walsh system $\{W_{k}(x)\}_{k=0}^{\infty}$ be given. Then for any $\epsilon>0$ there exists a measurable set $E\subset\lbrack0,1]$ with measure $|E|>1-\epsilon$ and numbers $\delta_{k}=\pm1, 0$ such that for any $p\in\lbrack1,2]$ and each function $f(x)\in L^{p}(E)$ there exists a rearrangement $k\to\sigma(k)$ such that the series $\displaystyle\sum _{k=1}^{\infty}\delta_{\sigma(k)}a_{\sigma(k)}W_{\sigma(k)}(x)$ converges to $f(x)$ in the norm of $L^{p}(E)$.
Keywords:
Walsh system, quasi universal series.
Received: 11.12.2015 Accepted: 24.02.2016
Citation:
R. G. Melikbekyan, “On quasi-universal Walsh series in $L^p_{[0,1]}$, $p\in[1,2]$”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 1, 22–29
Linking options:
https://www.mathnet.ru/eng/uzeru94 https://www.mathnet.ru/eng/uzeru/y2016/i1/p22
|
Statistics & downloads: |
Abstract page: | 105 | Full-text PDF : | 32 | References: | 51 |
|