Loading [MathJax]/jax/output/SVG/config.js
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2020, Volume 54, Issue 2, Pages 87–95
DOI: https://doi.org/10.46991/PYSU:A/2020.54.2.087
(Mi uzeru709)
 

This article is cited in 4 scientific papers (total in 4 papers)

Mathematics

On solvability of a nonlinear discrete system in the spread theory of infection

M. H. Avetisyan

Institute of Mathematics, National Academy of Sciences of Armenia, Yerevan
Full-text PDF (242 kB) Citations (4)
References:
Abstract: In this paper a special class of infinite nonlinear system of algebraic equations with Teoplitz matrix is studied. The mentioned system arises in the mathematical theory of the spatial temporal spread of the epidemic. The existence and the uniqueness of the solution in the space of bounded sequences are proved. It is studied also the asymptotic behavior of the constructed solution at infinity. At the end of the work specific examples are given.
Keywords: infinite system, nonlinearity, monotonicity, epidemics, uniqueness.
Received: 24.01.2020
Revised: 30.06.2020
Accepted: 17.08.2020
Document Type: Article
MSC: 45G10, 92B05
Language: English
Citation: M. H. Avetisyan, “On solvability of a nonlinear discrete system in the spread theory of infection”, Proceedings of the YSU, Physical and Mathematical Sciences, 54:2 (2020), 87–95
Citation in format AMSBIB
\Bibitem{Ave20}
\by M.~H.~Avetisyan
\paper On solvability of a nonlinear discrete system in the spread theory of infection
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 2020
\vol 54
\issue 2
\pages 87--95
\mathnet{http://mi.mathnet.ru/uzeru709}
\crossref{https://doi.org/10.46991/PYSU:A/2020.54.2.087}
Linking options:
  • https://www.mathnet.ru/eng/uzeru709
  • https://www.mathnet.ru/eng/uzeru/v54/i2/p87
  • This publication is cited in the following 4 articles:
    1. A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “On the constructive solvability of one class nonlinear integral equations of the Hammerstein type on the whole line”, Izv. Vyssh. Uchebn. Zaved. Mat., 2025, no. 3, 89–106  mathnet  mathnet  crossref
    2. Kh. A. Khachatryan, H. S. Petrosyan, “An iterative method for solving one class of nonlinear integral equations with the Nemytskii operator on the positive half-line”, Izv. RAN. Ser. Mat., 88:4 (2024), 168–203  mathnet  mathnet  crossref
    3. Kh. A. Khachatryan, H. S. Petrosyan, “An iterative method for solving one class of non-linear integral equations with Nemytskii operator on the positive semi-axis”, Izv. Math., 88:4 (2024), 760–793  mathnet  mathnet  crossref  crossref
    4. Kh. A. Khachatryan, A. S. Petrosyan, “Teoremy suschestvovaniya i edinstvennosti dlya odnoi beskonechnoi sistemy nelineinykh algebraicheskikh uravnenii”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 44 (2023), 44–54  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
    Statistics & downloads:
    Abstract page:178
    Full-text PDF :69
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025