Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2017, Volume 51, Issue 3, Pages 241–249 (Mi uzeru417)  

This article is cited in 1 scientific paper (total in 1 paper)

Mathematics

Uniqueness theorems for multiple Franklin series

K. A. Navasardyan

Chair of Numerical Analysis and Mathematical Modelling YSU, Armenia
Full-text PDF (175 kB) Citations (1)
References:
Abstract: It is proved, that if the square partial sums $\sigma_{q_n}(x)$ of a multiple Franklin series converge in measure to a function $f$, the ratio $\dfrac{q_{n+1}}{q_n}$ is bounded and the majorant of partial sums satisfies to a necessary condition, then the coefficients of the series are restored by the function $f$.
Keywords: majorant of partial sums, $A$-integral, uniqueness.
Received: 22.09.2017
Accepted: 11.10.2017
Bibliographic databases:
Document Type: Article
MSC: 42C10
Language: English
Citation: K. A. Navasardyan, “Uniqueness theorems for multiple Franklin series”, Proceedings of the YSU, Physical and Mathematical Sciences, 51:3 (2017), 241–249
Citation in format AMSBIB
\Bibitem{Nav17}
\by K.~A.~Navasardyan
\paper Uniqueness theorems for multiple Franklin series
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 2017
\vol 51
\issue 3
\pages 241--249
\mathnet{http://mi.mathnet.ru/uzeru417}
\zmath{https://zbmath.org/?q=an:1387.42032}
Linking options:
  • https://www.mathnet.ru/eng/uzeru417
  • https://www.mathnet.ru/eng/uzeru/v51/i3/p241
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
    Statistics & downloads:
    Abstract page:125
    Full-text PDF :30
    References:26
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024