Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2008, Issue 3, Pages 25–33 (Mi uzeru311)  

Mathematics

Embedding of absolutely free groups into groups $B(m,n,1)$

V. S. Atabekyan, A. S. Pahlevanyan

Chair of Algebra and Geometry YSU, Armenia
References:
Abstract: In this paper we prove that each countable absolutely free group can be isomorphic embedded into groups$B(m,n,1)$ for arbitrary $m \ge 2$ and odd $n \ge 665$. Thereby is shown that each group $B(m,n,1)$ generates the variety of all groups, and groups $B(m,n,1)$ are non-amenable. Particularly Tarski’s number is equal to $4$.
Received: 31.01.2008
Document Type: Article
UDC: 512.54
Language: Russian
Citation: V. S. Atabekyan, A. S. Pahlevanyan, “Embedding of absolutely free groups into groups $B(m,n,1)$”, Proceedings of the YSU, Physical and Mathematical Sciences, 2008, no. 3, 25–33
Citation in format AMSBIB
\Bibitem{AtaPah08}
\by V.~S.~Atabekyan, A.~S.~Pahlevanyan
\paper Embedding of absolutely free groups into groups $B(m,n,1)$
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 2008
\issue 3
\pages 25--33
\mathnet{http://mi.mathnet.ru/uzeru311}
Linking options:
  • https://www.mathnet.ru/eng/uzeru311
  • https://www.mathnet.ru/eng/uzeru/y2008/i3/p25
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
    Statistics & downloads:
    Abstract page:137
    Full-text PDF :26
    References:34
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024