|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2016, Issue 2, Pages 15–21
(Mi uzeru153)
|
|
|
|
Mathematics
Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$
N. T. Gapoyan Chair of the General Mathematics YSU, Armenia
Abstract:
Banach spaces $h_\infty (\varPhi)$, $h_0 (\varPhi)$ and $h^1(\eta) $ of functions, pluriharmonic in the unit ball in $\mathbb{C}^n$, depending on weight function $\varPhi$ and weighting measure $\eta$ are introduced. The question we consider is: for given $\varPhi$ we find a finite positive Borel measure $\eta$ on $[0,1)$ such that $h^1(\eta)^* $ $\thicksim$ $h_\infty (\varPhi)$ and $h_0 (\varPhi)^*$ $\thicksim$ $h^1(\eta)$.
Keywords:
pluriharmonic function, unit ball in $\mathbb{C}^n$, duality, weighted spaces, projection, reproducing kernel.
Received: 05.02.2016 Accepted: 25.02.2016
Citation:
N. T. Gapoyan, “Duality in spaces of functions pluriharmonic in the unit ball in $\mathbb{C}^n$”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 2, 15–21
Linking options:
https://www.mathnet.ru/eng/uzeru153 https://www.mathnet.ru/eng/uzeru/y2016/i2/p15
|
|