Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2016, Issue 2, Pages 3–8 (Mi uzeru151)  

Mathematics

A transcendence result for the equation $D y = a Dx$

V. A. Aslanyan

Mathematical Institute, University of Oxford
References:
Abstract: An analogue of the Lindemann–Weierstrass theorem in differential setting for the differential equation $D y = a D x$ is proved, where $a$ is a non-constant parameter.
Keywords: abstract differential equation, Ax-Schanuel theorem, Lindemann–Weierstrass theorem.
Received: 07.03.2016
Accepted: 28.03.2016
Document Type: Article
MSC: Primary 12H05; Secondary 12H20
Language: English
Citation: V. A. Aslanyan, “A transcendence result for the equation $D y = a Dx$”, Proceedings of the YSU, Physical and Mathematical Sciences, 2016, no. 2, 3–8
Citation in format AMSBIB
\Bibitem{Asl16}
\by V.~A.~Aslanyan
\paper A transcendence result for the equation $D y = a Dx$
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 2016
\issue 2
\pages 3--8
\mathnet{http://mi.mathnet.ru/uzeru151}
Linking options:
  • https://www.mathnet.ru/eng/uzeru151
  • https://www.mathnet.ru/eng/uzeru/y2016/i2/p3
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025