Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Proceedings of the YSU, Physical and Mathematical Sciences:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2015, Issue 1, Pages 52–60 (Mi uzeru15)  

This article is cited in 9 scientific papers (total in 9 papers)

Informatics

On non-classical theory of computability

S. A. Nigiyan

Yerevan State University
Full-text PDF (162 kB) Citations (9)
References:
Abstract: Definition of arithmetical functions with indeterminate values of arguments is given. Notions of computability, strong computability and λ-definability for such functions are introduced. Monotonicity and computability of every λ-definable arithmetical function with indeterminate values of arguments is proved. It is proved that every computable, naturally extended arithmetical function with indeterminate values of arguments is λ-definable. It is also proved that there exist strong computable, monotonic arithmetical functions with indeterminate values of arguments, which are not λ-definable. The δ-redex problem for strong computable, monotonic arithmetical functions with indeterminate values of arguments is defined. It is proved that there exist strong computable, λ-definable arithmetical functions with indeterminate values of arguments, for which the δ-redex problem is unsolvable.
Keywords: arithmetical function, indeterminate value of argument, computability, strong computability, λ-definability, β-redex, δ-redex.
Received: 20.10.2014
Accepted: 17.12.2014
Document Type: Article
MSC: Primary 68Q01; Secondary 68Q05
Language: English
Citation: S. A. Nigiyan, “On non-classical theory of computability”, Proceedings of the YSU, Physical and Mathematical Sciences, 2015, no. 1, 52–60
Citation in format AMSBIB
\Bibitem{Nig15}
\by S.~A.~Nigiyan
\paper On non-classical theory of computability
\jour Proceedings of the YSU, Physical and Mathematical Sciences
\yr 2015
\issue 1
\pages 52--60
\mathnet{http://mi.mathnet.ru/uzeru15}
Linking options:
  • https://www.mathnet.ru/eng/uzeru15
  • https://www.mathnet.ru/eng/uzeru/y2015/i1/p52
  • This publication is cited in the following 9 articles:
    1. L. Budaghyan, D. A. Grigoryan, L. H. Torosyan, “A necessary and sufficient condition for the uniqueness of βδ-normal form of typed λ-terms”, Uch. zapiski EGU, ser. Fizika i Matematika, 53:1 (2019), 28–36  mathnet
    2. D. A. Grigoryan, “On the uniqueness of βδ-normal form of typed λ-terms for the canonical notion of δ-reduction”, Uch. zapiski EGU, ser. Fizika i Matematika, 53:1 (2019), 37–46  mathnet
    3. S. A. Nigiyan, “λ-definability of built-in McCarthy functions as functions with indeterminate values of arguments”, Uch. zapiski EGU, ser. Fizika i Matematika, 53:3 (2019), 191–202  mathnet
    4. D. A. Grigoryan, “On incomparability of interpretation algorithms of typed functional programs with respect to undefined value”, Uch. zapiski EGU, ser. Fizika i Matematika, 52:2 (2018), 109–118  mathnet
    5. D. A. Grigoryan, “On main canonical notion of δ-reduction”, Uch. zapiski EGU, ser. Fizika i Matematika, 52:3 (2018), 191–199  mathnet
    6. S. A. Nigiyan, T. V. Khondkaryan, “On canonical notion of δ-reduction and on translation of typed λ-terms into untyped λ-terms”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:1 (2017), 46–52  mathnet
    7. S. A. Nigiyan, T. V. Khondkaryan, “On translation of typed functional programs into untyped functional programs”, Uch. zapiski EGU, ser. Fizika i Matematika, 51:2 (2017), 177–186  mathnet
    8. S. A. Nigiyan, “On λ-definability of arithmetical functions with indeterminate values of arguments”, Uch. zapiski EGU, ser. Fizika i Matematika, 2016, no. 2, 39–47  mathnet
    9. T. V. Khondkaryan, “On typed and untyped lambda-terms”, Uch. zapiski EGU, ser. Fizika i Matematika, 2015, no. 2, 45–52  mathnet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Proceedings of the Yerevan State University, series Physical and Mathematical Sciences
    Statistics & downloads:
    Abstract page:310
    Full-text PDF :87
    References:104
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025