|
Proceedings of the Yerevan State University, series Physical and Mathematical Sciences, 2012, Issue 3, Pages 29–33
(Mi uzeru145)
|
|
|
|
Mathematics
On degenerate nonself-adjoint differential equations of fourth order
L. P. Tepoyan, H. S. Grigoryan Chair of Differential Equations YSU, Armenia
Abstract:
We consider the degenerate nonself-adjoint differential equation of fourth order $Lu\equiv(t^{\alpha}u^{\prime\prime})^{\prime\prime}+au^{\prime\prime\prime}-pu^{\prime}+qu=f$ where $t\in(0, b), \ 0\leq\alpha\leq 2, \alpha\neq 1, a, p, q $ are the constant numbers and $a\neq0, p>0, f\in L_2(0, b)$. We prove that the statement of the Dirichlet problem for the above equation depends on the sign of the number $a$ (Keldysh Teorem).
Keywords:
Dirichlet problem, degenerate equations, weighted Sobolev spaces, spectral theory of linear operators.
Received: 20.08.2012 Accepted: 25.09.2012
Citation:
L. P. Tepoyan, H. S. Grigoryan, “On degenerate nonself-adjoint differential equations of fourth order”, Proceedings of the YSU, Physical and Mathematical Sciences, 2012, no. 3, 29–33
Linking options:
https://www.mathnet.ru/eng/uzeru145 https://www.mathnet.ru/eng/uzeru/y2012/i3/p29
|
|