|
Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$
Mohamed El Hammaa, Hamad Sidi Lafdalb, Nisrine Djellaba, Chaimaa Khalila a Laboratoire TAGMD, Faculté des Sciences Aїn Chock, Université Hassan II
b CRMEF, Laayoune, Morocco
Abstract:
Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M. S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the $(\nu, \gamma, p)$-Jacobi–Lipschitz class in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t)dt)$.
Keywords:
Jacobi operator, Jacobi transform, Generalized translation operator.
Citation:
Mohamed El Hamma, Hamad Sidi Lafdal, Nisrine Djellab, Chaimaa Khalil, “Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$”, Ural Math. J., 5:1 (2019), 53–58
Linking options:
https://www.mathnet.ru/eng/umj74 https://www.mathnet.ru/eng/umj/v5/i1/p53
|
Statistics & downloads: |
Abstract page: | 217 | Full-text PDF : | 67 | References: | 38 |
|