Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2019, Volume 5, Issue 1, Pages 53–58
DOI: https://doi.org/10.15826/umj.2019.1.006
(Mi umj74)
 

Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$

Mohamed El Hammaa, Hamad Sidi Lafdalb, Nisrine Djellaba, Chaimaa Khalila

a Laboratoire TAGMD, Faculté des Sciences Aїn Chock, Université Hassan II
b CRMEF, Laayoune, Morocco
References:
Abstract: Using a generalized translation operator, we obtain an analog of Younis' theorem [Theorem 5.2, Younis M. S. Fourier transforms of Dini–Lipschitz functions, Int. J. Math. Math. Sci., 1986] for the Jacobi transform for functions from the $(\nu, \gamma, p)$-Jacobi–Lipschitz class in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t)dt)$.
Keywords: Jacobi operator, Jacobi transform, Generalized translation operator.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mohamed El Hamma, Hamad Sidi Lafdal, Nisrine Djellab, Chaimaa Khalil, “Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$”, Ural Math. J., 5:1 (2019), 53–58
Citation in format AMSBIB
\Bibitem{El LafDje19}
\by Mohamed~El Hamma, Hamad~Sidi~Lafdal, Nisrine~Djellab, Chaimaa~Khalil
\paper Jacobi transform of $(\nu, \gamma, p)$-Jacobi-Lipschitz functions in the space $\mathrm{L}^{p}(\mathbb{R}^{+},\Delta_{(\alpha,\beta)}(t) dt)$
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 1
\pages 53--58
\mathnet{http://mi.mathnet.ru/umj74}
\crossref{https://doi.org/10.15826/umj.2019.1.006}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3995655}
\zmath{https://zbmath.org/?q=an:1443.42005}
\elib{https://elibrary.ru/item.asp?id=38948057}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071464397}
Linking options:
  • https://www.mathnet.ru/eng/umj74
  • https://www.mathnet.ru/eng/umj/v5/i1/p53
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :67
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024