Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2019, Volume 5, Issue 1, Pages 48–52
DOI: https://doi.org/10.15826/umj.2019.1.005
(Mi umj73)
 

This article is cited in 1 scientific paper (total in 1 paper)

Commutative weakly invo-clean group rings

Peter V. Danchev

Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
Full-text PDF (100 kB) Citations (1)
References:
Abstract: A ring $R$ is called weakly invo-clean if any its element is the sum or the difference of an involution and an idempotent. For each commutative unital ring $R$ and each abelian group $G$, we find only in terms of $R$, $G$ and their sections a necessary and sufficient condition when the group ring $R[G]$ is weakly invo-clean. Our established result parallels to that due to Danchev-McGovern published in J. Algebra (2015) and proved for weakly nil-clean rings.
Keywords: invo-clean rings, weakly invo-clean rings, group rings.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Peter V. Danchev, “Commutative weakly invo-clean group rings”, Ural Math. J., 5:1 (2019), 48–52
Citation in format AMSBIB
\Bibitem{Dan19}
\by Peter~V.~Danchev
\paper Commutative weakly invo-clean group rings
\jour Ural Math. J.
\yr 2019
\vol 5
\issue 1
\pages 48--52
\mathnet{http://mi.mathnet.ru/umj73}
\crossref{https://doi.org/10.15826/umj.2019.1.005}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3995654}
\zmath{https://zbmath.org/?q=an:07255667}
\elib{https://elibrary.ru/item.asp?id=38948054}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071479321}
Linking options:
  • https://www.mathnet.ru/eng/umj73
  • https://www.mathnet.ru/eng/umj/v5/i1/p48
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:181
    Full-text PDF :92
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024