Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2018, Volume 4, Issue 2, Pages 13–23
DOI: https://doi.org/10.15826/umj.2018.2.003
(Mi umj59)
 

One-sided $L$-approximation on a sphere of the characteristic function of a layer

Marina V. Deikalova, Anastasiya Yu. Torgashova

Ural Federal University, 51 Lenin aven., Ekaterinburg, Russia, 620000
References:
Abstract: In the space $L(\mathbb{S}^{m-1})$ of functions integrable on the unit sphere $\mathbb{S}^{m-1}$ of the Euclidean space $\mathbb{R}^{m}$ of dimension $m\ge 3$, we discuss the problem of one-sided approximation to the characteristic function of a spherical layer $\mathbb{G}(J)=\{x=(x_1,x_2,\ldots,x_m)\in \mathbb{S}^{m-1}\colon x_m\in J\},$ where $J$ is one of the intervals $(a,1],$ $(a,b),$ and $[-1,b),$ $-1< a<b< 1,$ by the set of algebraic polynomials of given degree $n$ in $m$ variables. This problem reduces to the one-dimensional problem of one-sided approximation in the space $L^\phi(-1,1)$ with the ultraspherical weight $ \phi(t)=(1-t^2)^\alpha,\ \alpha=(m-3)/2$, to the characteristic function of the interval $J$. This result gives a solution of the problem of one-sided approximation to the characteristic function of a spherical layer in all cases when a solution of the corresponding one-dimensional problem known. In the present paper, we use results by A.G. Babenko, M.V. Deikalova, and Sz.G. Revesz (2015) and M.V. Deikalova and A.Yu. Torgashova (2018) on the one-sided approximation to the characteristic functions of intervals.
Keywords: One-sided approximation, characteristic function, spherical layer, spherical cap, algebraic polynomials.
Funding agency Grant number
Russian Foundation for Basic Research 18-01-00336
Ministry of Education and Science of the Russian Federation 02.A03.21.0006
This work was supported by the Russian Foundation for Basic Research (project no. 18-01-00336) and by the Russian Academic Excellence Project (agreement no. 02.A03.21.0006 of August 27, 2013, between the Ministry of Education and Science of the Russian Federation and Ural Federal University).
Bibliographic databases:
Document Type: Article
Language: English
Citation: Marina V. Deikalova, Anastasiya Yu. Torgashova, “One-sided $L$-approximation on a sphere of the characteristic function of a layer”, Ural Math. J., 4:2 (2018), 13–23
Citation in format AMSBIB
\Bibitem{DeiTor18}
\by Marina~V.~Deikalova, Anastasiya~Yu.~Torgashova
\paper One-sided $L$-approximation on a sphere of the characteristic function of a layer
\jour Ural Math. J.
\yr 2018
\vol 4
\issue 2
\pages 13--23
\mathnet{http://mi.mathnet.ru/umj59}
\crossref{https://doi.org/10.15826/umj.2018.2.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3901581}
\elib{https://elibrary.ru/item.asp?id=36702169}
Linking options:
  • https://www.mathnet.ru/eng/umj59
  • https://www.mathnet.ru/eng/umj/v4/i2/p13
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :79
    References:41
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024