|
This article is cited in 1 scientific paper (total in 1 paper)
A model of age-structured population under stochastic perturbation of death and birth rates
Maxim A. Alshanskiy Ural Federal University, Ekaterinburg, Russia
Abstract:
Under consideration is construction of a model of age-structured population reflecting random oscillations of the death and birth rate functions. We arrive at an Itô-type difference equation in a Hilbert space of functions which can not be transformed into a proper Itô equation via passing to the limit procedure due to the properties of the operator coefficients. We suggest overcoming the obstacle by building the model in a space of Hilbert space valued generalized random variables where it has the form of an operator-differential equation with multiplicative noise. The result on existence and uniqueness of the solution to the obtained equation is stated.
Keywords:
Brownian sheet, Cylindrical Wiener process, Gaussian white noise, Stochastic differential equation, Age-structured population model.
Citation:
Maxim A. Alshanskiy, “A model of age-structured population under stochastic perturbation of death and birth rates”, Ural Math. J., 4:1 (2018), 3–13
Linking options:
https://www.mathnet.ru/eng/umj51 https://www.mathnet.ru/eng/umj/v4/i1/p3
|
Statistics & downloads: |
Abstract page: | 191 | Full-text PDF : | 79 | References: | 38 |
|