Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2017, Volume 3, Issue 2, Pages 130–142
DOI: https://doi.org/10.15826/umj.2017.2.014
(Mi umj49)
 

This article is cited in 4 scientific papers (total in 4 papers)

Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals

Victor Nijimbere

School of Mathematics and Statistics, Carleton University, Ottawa, Ontario, Canada
Full-text PDF (159 kB) Citations (4)
References:
Abstract: A formula for the non-elementary integral $\int e^{\lambda x^\alpha} dx$ where $\alpha$ is real and greater or equal two, is obtained in terms of the confluent hypergeometric function $_{1}F_1$ by expanding the integrand as a Taylor series. This result is verified by directly evaluating the area under the Gaussian Bell curve, corresponding to $\alpha=2$, using the asymptotic expression for the confluent hypergeometric function and the Fundamental Theorem of Calculus (FTC). Two different but equivalent expressions, one in terms of the confluent hypergeometric function $_{1}F_1$ and another one in terms of the hypergeometric function $_1F_2$, are obtained for each of these integrals, $\int\cosh(\lambda x^\alpha)dx$, $\int\sinh(\lambda x^\alpha)dx$, $\int \cos(\lambda x^\alpha)dx$ and $\int\sin(\lambda x^\alpha)dx$, $\lambda\in \mathbb{C},\alpha\ge2$. And the hypergeometric function $_1F_2$ is expressed in terms of the confluent hypergeometric function $_1F_1$. Some of the applications of the non-elementary integral $\int e^{\lambda x^\alpha} dx, \alpha\ge 2$ such as the Gaussian distribution and the Maxwell-Bortsman distribution are given.
Keywords: Non-elementary integral, Hypergeometric function, Confluent hypergeometric function, Asymptotic evaluation, Fundamental theorem of calculus, Gaussian, Maxwell-Bortsman distribution.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Victor Nijimbere, “Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals”, Ural Math. J., 3:2 (2017), 130–142
Citation in format AMSBIB
\Bibitem{Nij17}
\by Victor~Nijimbere
\paper Evaluation of the non-elementary integral ${\int e^{\lambda x^\alpha} dx}$, ${\alpha\ge2}$ and other related integrals
\jour Ural Math. J.
\yr 2017
\vol 3
\issue 2
\pages 130--142
\mathnet{http://mi.mathnet.ru/umj49}
\crossref{https://doi.org/10.15826/umj.2017.2.014}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3746958}
\elib{https://elibrary.ru/item.asp?id=32334105}
Linking options:
  • https://www.mathnet.ru/eng/umj49
  • https://www.mathnet.ru/eng/umj/v3/i2/p130
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024