Loading [MathJax]/jax/output/SVG/config.js
Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2017, Volume 3, Issue 2, Pages 67–73
DOI: https://doi.org/10.15826/umj.2017.2.009
(Mi umj44)
 

On interpolation by almost trigonometric splines

Sergey I. Novikov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: The existence and uniqueness of an interpolating periodic spline defined on an equidistant mesh by the linear differential operator $\mathcal{L}_{2n+2}(D)=D^{2}(D^{2}+1^{2})(D^{2}+2^{2})\cdots (D^{2}+n^{2})$ with $n\in\mathbb{N}$ are reproved under the final restriction on the step of the mesh. Under the same restriction, sharp estimates of the error of approximation by such interpolating periodic splines are obtained.
Keywords: Splines, Interpolation, Approximation, Linear differential operator.
Funding agency Grant number
Ural Branch of the Russian Academy of Sciences 15-16-1-4
This work was supported by the Program “Modern problems in function theory and applications” of the Ural Branch of RAS (project no. 15–16–1–4).
Bibliographic databases:
Document Type: Article
Language: English
Citation: Sergey I. Novikov, “On interpolation by almost trigonometric splines”, Ural Math. J., 3:2 (2017), 67–73
Citation in format AMSBIB
\Bibitem{Nov17}
\by Sergey~I.~Novikov
\paper On interpolation by almost trigonometric splines
\jour Ural Math. J.
\yr 2017
\vol 3
\issue 2
\pages 67--73
\mathnet{http://mi.mathnet.ru/umj44}
\crossref{https://doi.org/10.15826/umj.2017.2.009}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3746953}
\elib{https://elibrary.ru/item.asp?id=32334100}
Linking options:
  • https://www.mathnet.ru/eng/umj44
  • https://www.mathnet.ru/eng/umj/v3/i2/p67
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025