Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2017, Volume 3, Issue 2, Pages 14–21
DOI: https://doi.org/10.15826/umj.2017.2.003
(Mi umj38)
 

On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series

Nikolai Yu. Antonov

Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
References:
Abstract: We consider one type of convergence of multiple trigonometric Fourier series intermediate between the convergence over cubes and the $\lambda $-convergence for $\lambda >1$. The well-known result on the almost everywhere convergence over cubes of Fourier series of functions from the class $ L (\ln ^ + L) ^ d \ln ^ + \ln ^ + \ln ^ + L ([0,2 \pi)^d ) $ has been generalized to the case of the $ \Lambda $-convergence for some sequences $\Lambda$.
Keywords: Trigonometric Fourier series, Rectangular partial sums, Convergence almost everywhere.
Funding agency Grant number
Russian Science Foundation 14-11-00702
This work was supported by the Russian Science Foundation (project no. 14-11-00702).
Bibliographic databases:
Document Type: Article
Language: English
Citation: Nikolai Yu. Antonov, “On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series”, Ural Math. J., 3:2 (2017), 14–21
Citation in format AMSBIB
\Bibitem{Ant17}
\by Nikolai~Yu.~Antonov
\paper On $\Lambda$-convergence almost everywhere of multiple trigonometric Fourier series
\jour Ural Math. J.
\yr 2017
\vol 3
\issue 2
\pages 14--21
\mathnet{http://mi.mathnet.ru/umj38}
\crossref{https://doi.org/10.15826/umj.2017.2.003}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3746947}
\elib{https://elibrary.ru/item.asp?id=32334094}
Linking options:
  • https://www.mathnet.ru/eng/umj38
  • https://www.mathnet.ru/eng/umj/v3/i2/p14
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025