Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2017, Volume 3, Issue 1, Pages 33–43
DOI: https://doi.org/10.15826/umj.2017.1.002
(Mi umj30)
 

Dispersive rarefaction wave with a large initial gradient

Alexander E. Elbert, Sergey V. Zakharov

Krasovskii Institute of Mathematics and Mechanics of Ural Branch of Russian Academy of Sciences, Ekaterinburg, Russia
References:
Abstract: Consider the Cauchy problem for the Korteweg-de Vries equation with a small parameter at the highest derivative and a large gradient of the initial function. Numerical and analytical methods show that the obtained using renormalization formal asymptotics, corresponding to rarefaction waves, is an asymptotic solution of the KdV equation. The graphs of the asymptotic solutions are represented, including the case of non-monotonic initial data.
Keywords: The Korteweg-de Vries, Cauchy problem, Asymptotic behavior, Rarefaction wave.
Funding agency Grant number
Russian Foundation for Basic Research 14-01-00322
This research was supported by RFBR grant No. 14-01-00322
Bibliographic databases:
Document Type: Article
Language: English
Citation: Alexander E. Elbert, Sergey V. Zakharov, “Dispersive rarefaction wave with a large initial gradient”, Ural Math. J., 3:1 (2017), 33–43
Citation in format AMSBIB
\Bibitem{ElbZak17}
\by Alexander~E.~Elbert, Sergey~V.~Zakharov
\paper Dispersive rarefaction wave with a large initial gradient
\jour Ural Math. J.
\yr 2017
\vol 3
\issue 1
\pages 33--43
\mathnet{http://mi.mathnet.ru/umj30}
\crossref{https://doi.org/10.15826/umj.2017.1.002}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=MR3684222}
\elib{https://elibrary.ru/item.asp?id=29728772}
Linking options:
  • https://www.mathnet.ru/eng/umj30
  • https://www.mathnet.ru/eng/umj/v3/i1/p33
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:256
    Full-text PDF :77
    References:45
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024