Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2024, Volume 10, Issue 1, Pages 28–43
DOI: https://doi.org/10.15826/umj.2024.1.003
(Mi umj218)
 

On a group extension involving the sporadic Janko group $J_{2}$

Ayoub B.M. Basheerab

a University of Limpopo (Turfloop)
b Sohar University
References:
Abstract: According to the electronic Atlas [23], the group $J_{2}$ has an absolutely irreducible module of dimension 6 over $\mathbb{F}_{4}.$ Therefore, a split extension group having the form $4^{6}{:}J_{2}:= \overline{G}$ exists. In this paper, we consider this group. Our purpose is to determine its conjugacy classes and character table using the methods of the coset analysis together with Clifford–Fischer theory. We determine the inertia factors of $\overline{G}$ by analyzing the maximal subgroups of $J_{2}$ and the maximal of the maximal subgroups of $J_{2}$ together with other various information. It turns out that the character table of $\overline{G}$ is a $53 \times 53$ real-valued matrix, while Fischer matrices of the extension are all integer-valued matrices with sizes ranging from 1 to 8.
Keywords: Group extensions, Janko sporadic simple group, Inertia groups, Fischer matrices, Character table
Bibliographic databases:
Document Type: Article
Language: English
Citation: Ayoub B.M. Basheer, “On a group extension involving the sporadic Janko group $J_{2}$”, Ural Math. J., 10:1 (2024), 28–43
Citation in format AMSBIB
\Bibitem{Bas24}
\by Ayoub~B.M.~Basheer
\paper On a group extension involving the sporadic Janko group $J_{2}$
\jour Ural Math. J.
\yr 2024
\vol 10
\issue 1
\pages 28--43
\mathnet{http://mi.mathnet.ru/umj218}
\crossref{https://doi.org/10.15826/umj.2024.1.003}
\elib{https://elibrary.ru/item.asp?id=68586402}
\edn{https://elibrary.ru/AGILKH}
Linking options:
  • https://www.mathnet.ru/eng/umj218
  • https://www.mathnet.ru/eng/umj/v10/i1/p28
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024