Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 193–208
DOI: https://doi.org/10.15826/umj.2023.2.016
(Mi umj215)
 

This article is cited in 1 scientific paper (total in 1 paper)

Graceful chromatic number of some cartesian product graphs

I. Nengah Supartaa, Mathiyazhagan Venkathacalamb, I Gede Aris Gunadia, Putu Andi Cipta Pratamaa

a Department of Mathematics, Universitas Pendidikan Ganesha, Jl. Udayana 11, Singaraja-Bali 81117, Indonesia
b Department of Mathematics, Kongunadu Arts and Science College, Coimbatore–641029, Tamil Nadu, India
Full-text PDF (422 kB) Citations (1)
References:
Abstract: A graph $G(V,E)$ is a system consisting of a finite non empty set of vertices $V(G)$ and a set of edges $E(G)$. A (proper) vertex colouring of $G$ is a function $f:V(G)\rightarrow \{1,2,\ldots,k\},$ for some positive integer $k$ such that $f(u)\neq f(v)$ for every edge $uv\in E(G)$. Moreover, if $|f(u)-f(v)|\neq |f(v)-f(w)|$ for every adjacent edges $uv,vw\in E(G)$, then the function $f$ is called graceful colouring for $G$. The minimum number $k$ such that $f$ is a graceful colouring for $G$ is called the graceful chromatic number of $G$. The purpose of this research is to determine graceful chromatic number of Cartesian product graphs $C_m \times P_n$ for integers $m\geq 3$ and $n\geq 2$, and $C_m \times C_n$ for integers $m,n\geq 3$. Here, $C_m$ and $P_m$ are cycle and path with $m$ vertices, respectively. We found some exact values and bounds for graceful chromatic number of these mentioned Cartesian product graphs.
Keywords: Graceful colouring, graceful chromatic number, cartesian product.
Bibliographic databases:
Document Type: Article
Language: English
Citation: I. Nengah Suparta, Mathiyazhagan Venkathacalam, I Gede Aris Gunadi, Putu Andi Cipta Pratama, “Graceful chromatic number of some cartesian product graphs”, Ural Math. J., 9:2 (2023), 193–208
Citation in format AMSBIB
\Bibitem{SupVenGun23}
\by I.~Nengah~Suparta, Mathiyazhagan~Venkathacalam, I Gede Aris~Gunadi, Putu~Andi Cipta~Pratama
\paper Graceful chromatic number of some cartesian product graphs
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 193--208
\mathnet{http://mi.mathnet.ru/umj215}
\crossref{https://doi.org/10.15826/umj.2023.2.016}
\elib{https://elibrary.ru/item.asp?id=59690672}
\edn{https://elibrary.ru/JWSXBF}
Linking options:
  • https://www.mathnet.ru/eng/umj215
  • https://www.mathnet.ru/eng/umj/v9/i2/p193
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025