Ural Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Ural Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Ural Mathematical Journal, 2023, Volume 9, Issue 2, Pages 99–108
DOI: https://doi.org/10.15826/umj.2023.2.008
(Mi umj207)
 

This article is cited in 1 scientific paper (total in 1 paper)

Computing the reachable set bounda for an abstract control system: revisited

Mikhail I. Gusev

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, Ekaterinburg
Full-text PDF (154 kB) Citations (1)
References:
Abstract: A control system can be treated as a mapping that maps a control to a trajectory (output) of the system. From this point of view, the reachable set, which consists of the ends of all trajectories at a given time, can be considered an image of the set of admissible controls into the state space under a nonlinear mapping. The paper discusses some properties of such abstract reachable sets. The principal attention is paid to the description of the set boundary.
Keywords: Reachable set, nonlinear mapping, control system, extremal problem, maximum principle.
Bibliographic databases:
Document Type: Article
Language: English
Citation: Mikhail I. Gusev, “Computing the reachable set bounda for an abstract control system: revisited”, Ural Math. J., 9:2 (2023), 99–108
Citation in format AMSBIB
\Bibitem{Gus23}
\by Mikhail~I.~Gusev
\paper Computing the reachable set bounda for an abstract control system: revisited
\jour Ural Math. J.
\yr 2023
\vol 9
\issue 2
\pages 99--108
\mathnet{http://mi.mathnet.ru/umj207}
\crossref{https://doi.org/10.15826/umj.2023.2.008}
\elib{https://elibrary.ru/item.asp?id=59690656}
\edn{https://elibrary.ru/MWLCHT}
Linking options:
  • https://www.mathnet.ru/eng/umj207
  • https://www.mathnet.ru/eng/umj/v9/i2/p99
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Ural Mathematical Journal
    Statistics & downloads:
    Abstract page:76
    Full-text PDF :17
    References:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024